Catching up with questions and comments

I wanted to just reply to a few comments and questions that have appeared here and on Twitter. I’m very gratified that so many people have clearly been thinking about this stuff.

I think we can and should generalise what I said about ski helmets to just about any realm of activity where they are “counted on” to provide protection. Construction hard-hats, bicycle helmets, hockey, Formula 1 pit crews, etc. The injury patterns almost certainly are different in each endeavour, and each therefore probably needs a different helmet. In general, we can’t expect the end user to do anything except have confidence in the equipment he (or she, that’s assumed in all my blog posts) chooses to use, or is obliged to use. That means that those who supply those helmets need to have a good idea of exactly what sort of injuries they need to mitigate. Clearly access to an appropriate level of protection has to be monetarily feasible. I chuckle to hear national-level rally drivers complain about a €2000 helmet (before going out and spending more than that on a set of tires! Helmets don’t make you fast!). I assume that a top of the line ski suit costs at least €800-1200. So that’s a constraint within which the manufacterers will have to work. They’re smart people. They’ll figure it out if the data gets generated.

Measuring g’s at the helmet with accelerometers is interesting, but there are severe enough problems with coupling to the head to make this data almost unusable in terms of BRAIN g’s. The DoD, and the FIA Institute, have been working on earpiece accelerometers for some time. These incorporate tiny 1 x 1 x 1 mm triaxial accelerometers into the part deepest into the ear canal. While this should theoretically give robust values for BRAIN g’s, that’s not happened yet. IRL has used earpiece accels for a while now, but I’m not sure they’re generating clinically useful data . . . yet.

Several people have sent me clippings concerning the effects of fish oil. Apparently someone “woke up” a comatose child using mega doses of fish oil. The explanations given were something like, well the brain is made up of fats, and so we give this good fat and it’s anti inflammatory too. The problem is that the person who administered this treatment published his results . . . on CNN. He should have published them in a peer-reviewed journal. Call me old-fashioned, but in terms of TREATING (not experimenting on) human beings, good quality evidence is the way to be guided, not what you saw last night on Dr. Sanjay Gupta’s show. That said, were I to be the close relative of a comatose head trauma patient, and were i to be  convinced that the risk profile of this kind of use of fish oil was acceptable, it is entirely possible that I’d be willing to have a go. But at the moment, let’s be clear, this is closer to ritual incantation than to medical science.

Lastly, something that’s been bothering me. A lot. As a doctor who practices pre-hospital medicine regularly.

Here goes: why was Michael brought to the hospital at Moutiers initially, and not to a neurosurgical centre? I am not trying to second guess (ok, just a bit) my colleagues who landed there on the 29th of December . . . BUT

  • reliable witnesses report to you that the victim hit his head
  • the victim’s helmet has been damaged in the impact
  • there’s blood on the snow
  • there is obvious signs of an open head injury
  • the victim is agitated (in any event his behaviour is not ENTIRELY normal)

Now I’m sorry, but it doesn’t take a doctor to put this together and figure out, “hey this person may have a head injury”.

Thing is, it is a general principle of pre-hospital medicine to take a patient to the closest APPROPRIATE facility. In a given Emergency Medical System’s territory, if this is applied “conservatively” it pretty much ALWAYS includes, for example paediatric cases and potential head injury. Thing is, there’s no neurosurgery at Moutiers. Why then was Michael brought there?

This question needs to be answered. As devastating as the injuries produced directly by the fall are, any delay in proper airway control and neurosurgical intervention cause further damage and must be minimised.

I raise this point simply because local protocols should be reviewed, and adjusted appropriately, in order to optimise the time it takes to get head-injured skiers cared for appropriately.